The odds that a potentially devastating space rock will hit Earth this century may be as high as one in 10. So why isn't NASA trying harder to prevent catastrophe?
Image credit: Stéphane Guisard, www.astrosurf.com/sguisard |
Breakthrough ideas have a way of seeming obvious in retrospect, and about a decade ago, a Columbia University geophysicist named Dallas Abbott had a breakthrough idea. She had been pondering the craters left by comets and asteroids that smashed into Earth. Geologists had counted them and concluded that space strikes are rare events and had occurred mainly during the era of primordial mists. But, Abbott realized, this deduction was based on the number of craters found on land—and because 70 percent of Earth's surface is water, wouldn't most space objects hit the sea? So she began searching for underwater craters caused by impacts rather than by other forces, such as volcanoes. What she has found is spine-chilling: evidence that several enormous asteroids or comets have slammed into our planet quite recently, in geologic terms. If Abbott is right, then you may be here today, reading this magazine, only because by sheer chance those objects struck the ocean rather than land.
Abbott believes that a space object about 300 meters in diameter hit the Gulf of Carpentaria, north of Australia, in 536 A.D. An object that size, striking at up to 50,000 miles per hour, could release as much energy as 1,000 nuclear bombs. Debris, dust, and gases thrown into the atmosphere by the impact would have blocked sunlight, temporarily cooling the planet—and indeed, contemporaneous accounts describe dim skies, cold summers, and poor harvests in 536 and 537. "A most dread portent took place," the Byzantine historian Procopius wrote of 536; the sun "gave forth its light without brightness." Frost reportedly covered China in the summertime. Still, the harm was mitigated by the ocean impact. When a space object strikes land, it kicks up more dust and debris, increasing the global-cooling effect; at the same time, the combination of shock waves and extreme heating at the point of impact generates nitric and nitrous acids, producing rain as corrosive as battery acid. If the Gulf of Carpentaria object were to strike Miami today, most of the city would be leveled, and the atmospheric effects could trigger crop failures around the world.
What's more, the Gulf of Carpentaria object was a skipping stone compared with an object that Abbott thinks whammed into the Indian Ocean near Madagascar some 4,800 years ago, or about 2,800 B.C. Researchers generally assume that a space object a kilometer or more across would cause significant global harm: widespread destruction, severe acid rain, and dust storms that would darken the world's skies for decades. The object that hit the Indian Ocean was three to five kilometers across, Abbott believes, and caused a tsunami in the Pacific 600 feet high—many times higher than the 2004 tsunami that struck Southeast Asia. Ancient texts such as Genesis and the Epic of Gilgamesh support her conjecture, describing an unspeakable planetary flood in roughly the same time period. If the Indian Ocean object were to hit the sea now, many of the world's coastal cities could be flattened. If it were to hit land, much of a continent would be leveled; years of winter and mass starvation would ensue.
- more -
Sphere: Related Content
No comments:
Post a Comment